Q.P. Code: 18HS0830 Reg. No: SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS) B.Tech I Year I Semester Supplementary Examinations November-2020 **MATHEMATICS-I** (Common to All) Max. Marks: 60 Time: 3 hours PART-A (Answer all the Questions $5 \times 2 = 10$ Marks) **a** Find the Rank of A = $\begin{bmatrix} 1 & 2 & 1 \\ -1 & 0 & 2 \\ 2 & 1 & -3 \end{bmatrix}$ 2M1 **b** State Lagrange's Mean Value theorem. 2Mc Define Curl of a vector. 2M **d** Define Convergence and Divergence of a Sequence. 2M e Find the Fourier constant a_0 for $f(x) = 1 - x^2$ in [-1,1]. 2M**PART-B** (Answer all Five Units 5 x 10 = 50 Marks) UNIT-I a Express the Matrix as a sum of Symmetric and Skew-Symmetric matrix, 2 **5M** $\mathbf{A} = \begin{bmatrix} 3 & -2 & -6 \\ 2 & 7 & -1 \\ 5 & 4 & 0 \end{bmatrix}$ **b** Determine the Eigen Values of A^{-1} where $A = \begin{bmatrix} 1 & 0 & -1 \\ 1 & 2 & 1 \\ 2 & 2 & 3 \end{bmatrix}$ **5**M Verify Cayley – Hamilton theorem $A = \begin{bmatrix} 8 & -8 & 2 \\ 4 & -3 & -2 \\ 3 & -4 & 1 \end{bmatrix}$ 10M 3 **UNIT-II** a Find the volume of the reel-shaped solid formed by the revolution about the y- axis, 4 **5**M of the part of the parabola $y^2 = 4ax$ cut off by the latus- rectum. b verify Cauchy's mean value theorem for the function $\sin x$ and $\cos x$ in the interval **5**M $[0, \pi/2]$ OR **a** Evaluate $\int_{0}^{1} x^{2} \left(\log \frac{1}{x} \right)^{3} dx$ 5 **5**M **b** Express the polynomial $2x^3 + 7x^2 + x$ -6 in powers of (x-2) by Taylor's Series **UNIT-III a** If $z = xy^2 + x^2y$ where $x = at^2$, y = 2at, find $\frac{dz}{dt}$ **5**M 6 **5**M **b** Find the minimum value of $x^2 + y^2 + z^2$, given that x + y + z = 3a**5**M Find the angle between the surfaces $x^2 + y^2 + z^2 = 9$ and $z = x^2 + y^2 - 3$ at the point 7 10M

R18

5M

5M

10M

10M

5M

5M

Q.P. Code: 18HS0830

10 Expand the function $f(x) = x^2$ as a Fourier series in $[-\pi, \pi]$ and hence deduce that

(i)
$$\frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \dots = \frac{\pi^2}{12}$$

(ii) $\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \dots = \frac{\pi^2}{6}$

OR

a Find half range Sine Series of $f(x) = x^2$ on 0 < x < 411 **b** Find half range Cosine series of f(x) = x(2-x) in $0 \le x \le 2$

END